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60 GHz and Above  (sub-THz) 
 Important Short and Long Range Applications 

•  Additional path loss @ 60 GHz 
due to Atmospheric Oxygen 

 
•  Atmosphere attenuates: 20 dB 

per kilometer 

•  Many future sub-THz bands 
available for both cellular/
outdoor and WPAN “whisper 
radio” 

T.S. Rappaport, et. al, “State of the Art in 60 GHz Integrated Circuits and Systems for Wireless communications,” 
Proceedings of IEEE, August 2011, pp. 1390-1436. 
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• G. L. Baldwin, “Background on Development of 60 GHz for Commercial Use,”  SiBEAM, inc. white paper, May 
2007, http://sibeam.com/whtpapers/Background_on_Dev_of_60GHz_for_Commercial%20Use.pdf 

Spectrum Allocation History for 60GHz – Key mmWave 
Frequency Band 

• Park, C., Rappaport, T.S. , “Short Range Wireless Communications for Next Generation Networks: UWB, 60 GHz Millimeter-Wave PAN, and ZigBee,” Vol.14, 
No. 4, IEEE Wireless Communications Magazine, Aug. 2007, pp 70-78.  

•  Spectrum 
allocation is 
worldwide 

•  5 GHz common 
bandwidth 
among several 
countries 
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mmWave Wavelength Visualization – 60GHz 

5 millimeters 

Integrated 
Circuit 
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Cellular and Wireless Backhaul 

Base station to base 
station Link 

Base station to 
mobile link 

Trends:  
•  Higher data usage 
•  Increase in base station density  
    (femto/pico cells) 
•  Greater frequency reuse 

Problem: fiber optic backhaul is expensive 
and difficult to install.  
Solution: Cheap CMOS-based wireless 
backhaul with beam steering capability. 

Antenna array 
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Mobile & Vehicle Connectivity 
•  Massive data rates 

- Mobile-to-mobile communication 
 - Establish ad-hoc networks 

•  High directionality in sensing 
 - Vehicular Radar and collision avoidance 
 - Vehicle components connected wirelessly 
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Future Applications 
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Information Showers 

•  The future: Showering of 
information 

•  Mounted on ceilings, walls, 
doorways, roadside  

•  Massive data streaming while 
walking or driving 

•  Roadside markers can provide 
safety information, navigation, 
or even advertisements  

Gutierrez, F.; Rappaport, T.S.;  Murdock,  J. " Millimeter-wave CMOS On-Chip Antennas for Vehicular Electronic Applications,” 72nd IEEE Vehicular Technology Conference Fall 2010. 
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Future Applications 

Decentralized Computing 

•  Replace interconnect with wireless 
•  Applications in warehouse data centers  
•  Cooling servers is paramount problem 
•  Decentralize and focus cooling on heat-

intensive components 
•  Increase efficiency 

Keynote Address “The Emerging World of Massively Broadband Devices:  60 GHz and Above,” Delivered by T. S. Rappaport, Wireless at Virginia Tech Symposium, Blacksburg 
Virginia, June 3-5, 2009. 
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60 GHz Power Budget – Compare to Cable Link in Data Center 

Park, M., ”Applications and Challenges  of Multi-band Gigabit Mesh Networks,” Sensor Technologies and Applications, 2008., SENSORCOMM ‘08.  Second International Conference, pp. 813-818 
Aug 2008 
 
J.N.Murdock, T. Rappaport, “Power Efficiency and Consumption Factor Analysis in Broadband Millimeter Wave Cellular Networks,,” IEEE Global Communications Conf. December 2012. 
 

•   A wired 10 meter link in a data center requires ~ 1 W of power 
•   Compare a wireless 60GHz link – more flexible, less cost, same power  

60 GHz Power Budget 
Power dissipated before Transmitter 
PA (e.g. by Mixers, VCO, etc) 

200mW 

Power dissipated by Transmitter/
Antenna PAs 

200mW 

Power dissipated in the channel/
antennas 

600mW 

Overall Link Power 1W -- same as fiber/cable 
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On-Chip Antennas for mmWave 

•  Motivation 
•  Challenges of On-Chip Antennas: Radiation into Substrate, Need for Material 

Parameters 
•  Different Antenna Topologies 
•  On-Chip Optimization:  Dipole and Yagi Placement, Rhombic Arm Angle and 

Thickness 
•  Overcoming On-Chip Challenges: Techniques to Improve On-Chip Gain and 

Efficiency 

© T.S. Rappaport 2010-2012 
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Gutierrez, F.; Rappaport, T.S.;  Murdock,  J. " Millimeter-wave CMOS On-Chip Antennas for Vehicular Electronic Applications,” 72nd IEEE Vehicular Technology Conference Fall 2010. 
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•  Millimeter-Wave (mmWave) and THz signals have small wavelengths (λ) 
- Wavelength of mmWave Frequencies fit On-Chip! 

•  If immersed in dielectric, λ shrinks by sqrt (permittivity) 
 - Example: permittivity of SiO2 ≈ 4 => wavelength in SiO2 ≈ 2.5mm 

•  Antenna sizes are comparable to integrated circuit 
(IC) sizes 

•  Tiny metal sheets available on ICs 
 - Can be used to fabricate mmWave/THz 
antennas 
  - Enough IC area available for directional 
arrays 

•  Saves PCB real estate  
 - (ex: handhelds, laptops, etc.) 

•  Reduces fabrication costs 
•  Pushes the bounds of integration 
 

Contains 2 antennas 

Why On-Chip Antennas? 

F. Gutierrez, S. Agarwal, and K. Parrish, “On-Chip Integrated Antenna Structures in 
CMOS for 60 GHz WPAN Systems,” IEEE Journal on Selected Areas in 
Communications, vol. 27, no. 8, October 2009, pp. 1367 – 1377.  
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Beam Forming and Steering 

60 GHz CMOS On-Chip Antenna designed by 
Rappaport Group 

•  Beamforming has been introduced into mmWave 
standards (e.g. IEEE 802.11ad)1  

•  Beam steering can be used to create a non-LOS link by 
reflecting off objects in the environment. 

 
1C.  Cordeiro,  D.  Akhmetov,  M.  Y.  Park,  “IEEE  802.11ad:  Introduction and 
Performance Evaluation of the First Multi-Gbps WiFi Technology,” Proc. ACM   
International Workshop on mmWave Communications, pp. 3-8, Sept. 2010. 

•   Antenna Size 

 
•   A large antenna array can be constructed in reasonable  
   form factor 
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•  New generations of CMOS = Higher doping concentration  
(less resistance to avoid latch up = turning on of parasitic BJT structures) 

- Higher doping = higher conductivity = lower efficiency 
 - 180 nm = 10 Ω⋅cm, 45 nm = 0.1 Ω⋅cm 

6 Metal 
Sheets ≈ 10 

µm  

Substrate ≈ 100 - 750 
µm  

Bulk Silicon 

•  High substrate conductivity 
increases substrate losses in the 
form of eddy currents for 
inductors and on-chip antennas.   

Y. N. Robert Doering, Handbook of Semiconductor Manufacturing 
Technology, 2nd ed. CRC Press, 2008. 
Gutierrez, F.; Rappaport, T.S.;  Murdock,  J. " Millimeter-wave CMOS 
On-Chip Antennas for Vehicular Electronic Applications, 72nd IEEE 
Vehicular Technology Conference Fall 2010 

Substrate Radiation and Process 
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• Y.P. Zhang, M. Sun, L.H. Guo 
• Yagi antenna on-chip 
•  Nanyang Technological University, 
Singapore (2005) 
• Gain: -12.5 dBi 
• Efficiency: 2% 
• CMOS approximated with post-BEOL 
process @ 60 GHz 
• 1.3 mm x .7 mm 
 

Zhang, Y.P.; Sun, M.; Guo, L.H., "On-chip antennas for 60-GHz radios in silicon technology," Electron Devices, IEEE Transactions on , vol.52, no.7, pp. 1664-1668, July 2005 

On-Chip Antenna Topologies - Yagi 

© T.S. Rappaport 2014 
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• Y.P. Zhang, M. Sun, L.H. Guo 
• Planar Inverted F Antenna 
•  Nanyang Technological 
University, Singapore (2005) 
• Gain: -19 dBi 
•  Efficiency: 1.7% 
• CMOS with post-BEOL process 
@ 60 GHz 
• 2 mm x 0.1 mm 

Zhang, Y.P.; Sun, M.; Guo, L.H., "On-chip antennas for 60-GHz radios in silicon technology," Electron Devices, IEEE Transactions on , vol.52, no.7, pp. 1664-1668, July 2005 

On-Chip Antenna Topologies –  
Planar Inverted F 
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On-Chip Antenna Topologies - Rhombic  

© T.S. Rappaport, F. Gutierrez, J. Murdock           
June 4, 2010 
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On-Chip Antenna Topologies - Rhombic  

F. Gutierrez, S. Agarwal, and K. Parrish, “On-Chip Integrated 
Antenna Structures in CMOS for 60 GHz WPAN Systems,” IEEE 
Journal on Selected Areas in Communications, vol. 27, no. 8, 
October 2009, pp. 1367 – 1377.  

•  F. Gutierrez, T. S. Rappaport, and J. 
Murdock of U. of Texas at Austin 
•  On-Chip Rhombic Antenna 
•  Balun for Single-Ended to Differential 
Conversion 
•   De-embedding Structures for 
Characterization  
•  5mm x 5mm (each side of Antenna ≥ 2λ) 
•  TSMC 180nm Process for Low 
Substrate Conductivity (Lower Loss vs. 
Newer Processes) 
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• Y. Zhang, M. Sun, and L. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” IEEE Trans. on Electron Devices, vol. 52, no. 7, pp. 1664–1668, July 2005. 
• S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H. Ru-Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi Antenna Fabricated by Using 0.18m CMOS Technology,” IEEE Electron Device Letters, vol. 29, no. 6, pp. 625–627, 
June 2008. 
• C.-C. Lin, S.-S. Hsu, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz millimeter-wave CMOS RFIC-on-chip triangular Monopole Antenna for WPAN applications,” IEEE Antennas and Propagation Society International 
Symposium, 2007, pp. 2522–2525, June 2007. F. Gutierrez, S. Agarwal, and K. Parrish, “On-Chip Integrated Antenna Structures in CMOS for 60 GHz WPAN Systems,” IEEE Journal on Selected Areas in 
Communications, vol. 27, no. 8, October 2009, pp. 1367 – 1377.  
• F. Gutierrez, S. Agarwal, and K. Parrish, “On-Chip Integrated Antenna Structures in CMOS for 60 GHz WPAN Systems,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, October 2009, pp. 1367 – 
1377.  

 

Antenna Max Gain Horizontal 
Gain 

     of Max 
Gain* 

Efficiency F/B Approximate Area 

Antennas developed in this paper 

Dipole -7.3 dBi -7.3 dBi 0° 9% 3 dB 0.13 mm2 

Yagi -3.55 dBi -3.8 dBi 
 

20° 15.8% 10.4 dB 0.9 mm2 (including  
               spacing) 

Rhombic -0.2 dBi -1.27 dBi 39° 85% 3.7 dB 3.5 mm2  
(metal only) 

Past works 

Quasi-Yagi -12.5 dBi 5.6% “Poor” 

Inverted F -19 dBi 3.5% 

CPW-Fed Yagi -10 dBi 10% 9 dB 

Triangle  -9.4 dBi 12% 

*above horizon 

Antenna Topologies - Comparison 

Summary of Results 
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Cellular	  Spectrum	  above	  3	  GHz	  
Will	  it	  happen,	  and	  will	  it	  work?	  

A	  look	  at	  past	  research 
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Past Research – Foliage Shadowing 

Above figure from: D.L. Jones, R.H. Espeland, 
and E.J. Violette, "Vegetation Loss 
Measurements at 9.6, 28.8, 57.6, and 96.1 GHz 
Through a Conifer Orchard in Washington 
State," U.S. Department of Commerce, NTIA 
Report 89-251, 1989.  

•  Attenuation due to foliage increases at mmWave 
frequencies. 

•  However, the spatial variation in shadowing is greater 
than lower frequencies. 

•  mmWave frequencies have very small wavelengths, 
hence smaller Frensel zone 

•  Wind may modify link quality 
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•  Seidel measured signal strength up to 5 km for wireless backhaul at 28 GHz 

•  Coverage area increases with receiver antenna height  

•  Receiver antenna scanned only in azimuth direction 

•  Our study showed elevation angle scanning increases coverage significantly 

Past Research – LMDS Coverage 

S.Y. Seidel and H.W. Arnold, "Propagation 
measurements at 28 GHz to investigate the 
performance of local multipoint distribution service 
(LMDS)," in IEEE Global Telecommunications 
Conference (Globecom), Nov. 1995, pp. 754-757. 
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Past Research – Rain Attenuation 

•  Zhao et al. (left figure) show the increase of rain attenuation with frequency 
•  Humpleman et al. (right figure) explain increase in scattering when the wavelength is smaller 
than the rain drop size 

Q. Zhao and J. Li, 
"Rain Attenuation 
in Millimeter Wave 
Ranges," Inter. 
Symp. on 
Antennas, 
Propagation & EM 
Theory, 2006. 

R.J. Humpleman and P.A. Watson, 
"Investigation of attenuation by 
rainfall at 60 GHz," Proceedings of 
the IEEE, vol. 125, no. 2, pp. 
85-91, Feb. 1978.  
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•   Path loss is important to estimate SNR and CIR at receiver 

•   Important in determining cell sizes 

•   Log-normal shadowing model is most commonly used 

Channel Path Loss  

PL0 is path loss measured at close-in 
distance d0 
 
 is a Gaussian random variable with 
standard deviation of σ that estimates 
the shadowing 

T. S. Rappaport, Wireless Communications: Principles and 
Practice, 2nd  Edition.  New Jersey: Prentice-Hall, 2002.  
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Multipath Excess Delay 

•  Excess Delay is propagation time at which multipath component reaches receiver 
after the first path. 

•  Important for equalization, cyclic prefix 

Mean Excess Delay 
 

      

RMS Delay Spread 

T. S. Rappaport, Wireless Communications: Principles and 
Practice, 2nd  Edition.  New Jersey: Prentice-Hall, 2002.  
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H. Xu, V. Kukshya, T. S. Rappaport, 
“Spatial and Temporal Characteristics 
of 60 GHz Indoor Channels,” IEEE 
Journal on Selected Areas in 
Communications, Vol. 20, No. 3, April 
2002, pp. 620 -630. 

•    AOA measurements are polar 
plots of received signal power 
versus receiver rotation angle. 

•     AOA data necessary for 
proper design of antenna array 
or switched  beam antenna 
applications. 

Angle of Arrival (AOA) Profiles 
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How	  to	  measure	  outdoor	  
millimeter	  wave	  cellular	  

channels?	  
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Sliding Correlator Hardware 

Pseudorandom Noise (PN) 
Generator 

•  Chip Rate up to 830MHz 
•   Size 2” X 2.6” 
•   11 bit Sequence 
•   Custom design 

Upconverter and Downconverter 
assemblies at 38 and 60 GHz, 
newer ones built at 28 GHz, 72 
GHz 
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Sliding Correlator Hardware 

Transmitter 
•  PN sequence Generator PCB 
•  IF frequency of 5.4 GHz 
•  Changeable RF upconverter for  28, 38 , 

60 , 72 GHz  

Receiver 
•  Changeable RF downconverter  
•  IQ demodulation from IF to baseband 

using quadrature hybrid LO phase 
shifting 

•  Correlation circuit for multiplying and 
filtering PN signals 

•  Data Acquisition using NI USB-5133 
with LabVIEW control 
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The	  World’s	  first	  radio	  
channel	  measurements	  for	  

5G	  cellular	  
	  

P2P	  (D2D)	  and	  cellular	  outdoor	  at	  38	  -‐	  60	  GHz 
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2011 Measurements at University of Texas 

§  Peer-to-Peer 38 and 60 GHz 
•  Antennas 1.5m above ground  
•  Ten RX locations (18-126m TR separation) 
•  Both LOS and NLOS links measured using 8o BW 25dBi gain antennas 

§  Cellular (rooftop-to-ground) at 38 GHz 
•  Four TX locations at various heights (8-36m above ground) with TR 

separation of 29 to 930m. 
•  8o BW TX antenna and 8o or 49o(13.3dBi gain) RX antenna. ~half of locations 

measured with 49o ant. 
•  LOS, partially-obstructed LOS, and NLOS links 
•  Outage Study – likelihood of outage 

o  Two TX locations of 18 and 36m height. 
o  8o BW antennas 
o  53 random RX locations  
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60 GHz AOA P2P Measurements 

•  Observation: Links exist at only 
few angles 

•  Thus, full AOA is not needed to 
characterize channel 

•  Only angles that have a signal 
are measured 
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Cellular Measurement Map 

Transmitter Locations 
WRW-A            ENS-A 

ECJ                    ENS-B 
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38 GHz Cellular AOA 

Histogram of TX angles for all links made 
using 25dBi antennas (10o bins) 

Histogram of RX 
angles for all links 
made using 25dBi 
antennas 
(10o bins) 

TX height 23m 
above ground 
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38 GHz Cellular Path Loss 

38 GHz Path Loss, 25dBi RX Antenna 

38GHz Path Loss, 13.3dBi RX Antenna 

•  Measurements performed using 13.3 and 
25dBi horn antennas 

•  Similar propagation was seen for clear LOS 
links (n = 1.9) 

•  Wider beam antenna captured more 
scattered paths in the case of obstructed 
LOS 

•  Large variation in NLOS links 
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38 GHz Outage Study 

•  2 adjacent TX locations 
-  ENS: Western side of an 8-story 
building (36 m high) 
-  WRW: Western side of a  
4-story building (18 m high) 

•  53 randomly selected outdoor RX 
locations (indoor excluded) 
•  460x740 meter region examined 
•  Contour lines on map show a 55 feet 
elevation increase from the TX locations 
to the edge of the investigated area 
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38 GHz Outage TX Location Comparison 

Similarities: 
•  No outages within 200 m were observed. 
•  Outage location clustering. 
Differences: 
•  The lower (WRW) TX location achieved better coverage for a short range. 
•  The higher (ENS) TX location produced links at obstructed locations over 400 m 
away. 
•  Shorter WRW cellsite results in a tighter cell (i.e. less interference), yet its range is 
significantly smaller in distance. 

Transmitter 
Location 

Height % Outage with 
>160 dB PL 

% Outage with 
>150 dB PL 

TX 1 ENS 36 m 18.9% all,      0% <  
200 m 

52.8% all,    27.3 % 
< 200 m                          

TX 2 WRW 18 m 39.6% all,      0% < 
200 m 

52.8% all,    10% < 
200 m 
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Measuring New York City NYU-Poly Brooklyn Campus 
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Measuring New York City The NYU Manhattan Campus 
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RX location: RX9 (Othmer 
Residence Hall NYU-Poly, 
Brooklyn, New York) 
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Millimeter Wave Measurments in NYC 

RX location: RX9 (Othmer 
Residence Hall NYU-Poly, 
Brooklyn, New York) 

TX location: ROG1 
(Rogers Hall NYU-Poly, 
Brooklyn, New York) 
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Millimeter Wave Measurments in NYC 

RX location: RX9 (Othmer 
Residence Hall NYU-Poly, 
Brooklyn, New York) 

TX location: ROG1 
(Rogers Hall NYU-Poly, 
Brooklyn, New York) 
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28 GHz LOS in Brooklyn 

• TX and RX pointing directly 
at each other, each with 25 
dB gain antennas 

Manhattan 
measurement  
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28 GHz LOS in Brooklyn 

• Beamsteering is not on      
boresight at same location 
as previous slide 

• RX pointing away from the 
TX towards a fence. 
 
• TX pointing at RX 

Manhattan 
measurement  
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28 GHz OBS location in NYC 

• Diffraction study with 25 
dBi antennas  

• TX and RX pointing at a 
glass door of building  
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Partially Obstructed Polar Plot 

• Signal was received 
in 16 different angles 
out of 36 (10 deg. res) 

• Partially obstructed 
environment 

• T-R separation – 135 
meters 

• Path loss values are 
relative to 5 meter free 
space     (75.3 ± 1 dB) 
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•  There is a lack of measurements and models at millimeter wave frequencies for 
outdoor cellular 

•  We found no outages for cells smaller than 200 m, with 25 dB gain antennas and 
typical power levels in Texas 

•  We are currently investigating New York City, 200 m cells work at 28 and 73 GHz 

•  On-chip and integrated package antennas at millimeter wave frequencies will 
enable massive data rates, far greater than today’s 4G LTE 

•  This an exciting  frontier for the future of wireless  

Millimeter wave Cellular – Early Days 
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Companies/Consortiums  Developing mmWave  
Applications for WPAN 

•  Consortiums developing products – Wireless Gigabit Alliance (WiGig), WirelessHD 
•    WirelessHD Alliance supports WirelessHD Standard 
•    WiGig Supports WiGig Standard and IEEE 802.11ad 

•  Companies developing products - NEC, Panasonic, LG, SiBeam, Sony, Intel, Broadcom, 
Toshiba, MediaTek, Samsung, and many more! 

•  WirelessHD , WiGig (now 802.11ad) products are now set for release 
• J. Palenchar, “WirelessHD Group Cites Product Gains,” TWICE:  This week in Consumer Electronics, vol. 24, no. 19, September 21, 2009, pp. 30-30. 
• J. Palenchar, “Next Generation of WirelessHD Gets CES Demo,” TWICE:  This Week in Consumer Electronics, vol. 25, no. 1, January 7, 2010, pp. 16 – 34.  
•  Wireless Giigabit Alliance, http://wirelessgigabitalliance.org/specifications/, accessed May 27, 2010 
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So…..how	  does	  Wireless	  
CommunicaOons	  enter	  its	  

Renaissance?	  
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NYU WIRELESS 
The World's First Academic Research Center Combining Wireless, 

Computing, and Medical applications  
 

 
 

NYU WIRELESS 
 NYU Polytechnic School of Engineering 

Brooklyn, NY 11201 
tsr@nyu.edu 
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NYU WIRELESS Mission and Expertise 

•  EXCITING NEW CENTER:  25 faculty and 100 students across NYU 

•  Solving problems for industry, creating research leaders, and developing fundamental 
knowledge and new applications using wireless technologies 

•  NYU Polytechnic (Electrical and Computer Engineering) 
•  NYU Courant Institute (Computer Science) 
•  NYU School of Medicine (Radiology) and world class hospital 

•  NYU WIRELESS faculty possess a diverse set of knowledge and expertise: 
•  Communications (DSP, Networks, RF/Microwave, Antennas, Circuits) 
•  Medical applications (Anesthesiology, EP Cardiology, MRI, Compressed sensing) 
•  Computing (Graphics, Data mining, Algorithms, Scientific computing) 
• Current in-force funding: 
•  Over $10 Million/annually  from  NSF,  NIH, and Corporate sponsors 
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Dan	  Sodickson	  
RF/	  MRI	  Design	  

NYUMC	  

Ryan	  Brown	  
RF	  Coils/
Imaging	  
NYUMC	  

JusOn	  Cappos	  
Systems	  
Security	  
POLY	  

Pei	  Liu	  
Wireless	  
Networks	  
POLY	  

Marc	  Bloom	  
Anesthesiology	  

NYUMC 	  	  

Daniel	  O'Neill	  
Anesthesiology

	  NYUMC
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NYU WIRELESS Industrial Affiliates  
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NYU WIRELESS Facilities  
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About NYU  

New York University 
•  One of the largest  and oldest private universities in the USA (1831) 
•  Origins in Telecom: Samuel Morse (Morse Code) first faculty member 
•  Pioneering the Global Network University w/campuses in Abu Dhabi, Shanghai, Toronto, 

Buenos Aires, and 18 other countries 
•  Faculty have received 34 Nobel Prizes, 16 Pulitzer Prizes,  21 Academy Awards, 10 

National of Science Medals 
•  New focus in Engineering for the Urban, Telecom, Bio-Med future 
•  NYU is ranked #32 in 2013 USNWR National University Ranking  

•  (GA Tech is 36, UT Austin is 46) 
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NYU WIRELESS Mission and Expertise 

MILLIMETER WAVE PAPER AMONG IEEE’S MOST RESEARCHED 
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Board Meeting and Recruitment Day  
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Board Meeting and Recruitment Day  

NYU WIRELESS students showcase their research to the board  
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Brooklyn 5G Summit Recap 
April 24 – 25, 2014  
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Hossein Moiin 
Chief Technology Officer (CTO) of NSN 

Welcome Address by 
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John Stankey  
Group President and Chief Strategy Officer, AT&T  

 Keynote : Better, Stronger, Faster: Unleashing the Next Generation of Innovation 
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US Spectrum Status for Higher Speed 
Michael Ha, FCC  
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Robert (Bob) J. Duffy 
Lieutenant Governor, New York State 
Luncheon Speaker 
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Great lineup of speakers from academia and industry 
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The Exhibits 
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Special Exhibits by Agilent Technologies, Intel, InterDigital, National Instruments, NSN, NYU WIRELESS, Prentice Hall Professional and Rohde & Schwarz 
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Special announcement and unveiling 
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DOCOMO’s 5G vision 
Dr. Seizo Onoe, DOCOMO 

 Platform Approach to Design 
of Next Generation Wireless 
Systems 
 
 Eric Starkloff, Sr. VP, National 
Instruments 

Panel Discussion: Creating a Partnership for 5G 
Channel Models 
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Samsung's Vision 
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In the Press  

5/8/14 76 

Fortune Magazine 
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In the Press  

5/8/14 77 

Microwave Journal 
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In the Press  

5/8/14 78 

Technical.ly 
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Conclusion 

© T.S. Rappaport 2010-2012 

• In the massively broadband era, wireless will obviate print, magnetic media and 
wired connections, in revolutionary ways!  
 
• It took 30 years to go one decade in wireless carrier frequency (450 MHz to 5.8 
GHz), yet we will advance another decade in the next year (5.8 to 60 GHz). By 2020, 
we will have devices well above 100 GHz and 20 Gbps in 5G and 6G cellular 
networks 
 
• Millimeter Wave Wireless  Communications offers a rich research field for low power 
electronics, integrated antennas, space-time processing, networking, and 
applications – a new frontier 
 
• The Renaissance of wireless is before us. Massive bandwidths and low power 
electronics will  bring wireless communications into new areas never before imagined, 
including medicine and the hospital of the future 
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